COMMUNITY STUDY OF PREVALENCE AND RISK FACTORS FOR CHRONIC KIDNEY DISEASE AMONG PAEDIATRIC AGE GROUP IN ONDO WEST LOCAL GOVERNMENT AREA OF ONDO STATE NIGERIA

AKINBODEWA AA, FADIPE F, ADEJUMO OA, ALLI O, AGOI, OLUWAFEMI O, AKINBO E, LAMIDI OA.

KIDNEY CARE CENTRE, UNIVERSITY OF MEDICAL SCIENCES, PMB 542 ONDO CITY, ONDO STATE.
The NKF/KDOQI in 2002 defined CKD as kidney damage manifested by structural or functional abnormalities lasting three or more months with or without decreased glomerular filtration rates (GFR) or a GFR< 60mls/min/1.73 m².
Introduction and Literature

• Little is known about the epidemiology of chronic kidney disease (CKD) among the paediatric population especially in Sub-Saharan Africa.
• Due to the asymptomatic nature of early CKD
• A prevalence of 12.1 to 74.7 cases per million children has been reported previously.
Nigerian data so far:

- Main source: major tertiary in-hospital data
- Tip of the iceberg (not truly representative).
- Examples: 4.0% (Enugu); 4.5% (Mid-west); 1.6% (Ilorin); 3.1% (Uyo)

• The highest percentage of paediatric CKD cases are potentially reversible (congenital)

• In Port-Harcourt, 28.9% of CKD were due to congenital disorders
• CKD in children is compounded by one or a combination of growth problems, nutrition, electrolyte imbalance, anaemia and hypertension.

• The child’s body system copes less with uraemia resulting in high levels of mortality among them.

• Early detection and management of kidney malfunction is crucial to delay or prevent progression of CKD to ESRD.
OBJECTIVES

• We therefore set out to determine the prevalence of CKD

...risk factors for CKD among children in Ondo State.
METHOD
Method

• 114 school children whose parents/guardians gave consent were studied
• Children outside 2-17 years and those who were acutely ill were excluded
• Their bio data was recorded on a proforma
• Their weights and heights were obtained with a standard stadiometer (RGZ-160 Lincon Mark Medical England)
• BMI was calculated using wt/ht2
• BP was measured using Accossons Mercury Spyhgmomanometer with appropriate cuff for age on the right upper arm after 5 minutes rest to the nearest 2mmHg
Method

- Blood samples were collected for Serum chemistry, haemogram, fasing lipids and albumin.
- eGFR was calculated using Schwartz formula
- Urine samples for analysis were obtained after adequate counsel of the parents/guardians
- *Combi 10 Unistrip®* was employed for urinalysis
Method

• Height, BMI and BP percentiles were determined using the appropriate charts.
• Written consent was obtained from the school authority.
• Data was analyzed with SPSS 17.
RESULTS
Gender distribution of subjects

51.80% male
48.20% female
Distribution of subjects by class

- pre-secondary: 63.20%
- Secondary: 33.30%
- post-secondary: 3.50%
Clinical and Lab parameters of subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>8.99</td>
<td>4.26</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²) BMI (kg/m²)</td>
<td>86.59</td>
<td>27.6</td>
</tr>
<tr>
<td></td>
<td>16.80</td>
<td>3.09</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>97.88</td>
<td>16.29</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>57.84</td>
<td>11.66</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>37.23</td>
<td>4.34</td>
</tr>
<tr>
<td>Serum creatinine (umol/L)</td>
<td>75.14</td>
<td>16.72</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.20</td>
<td>0.83</td>
</tr>
<tr>
<td>Triglyceride (mmol/L)</td>
<td>1.85</td>
<td>0.29</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/L)</td>
<td>1.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>40.60</td>
<td>6.23</td>
</tr>
</tbody>
</table>
KDOQI Staging of CKD (n=104)

<table>
<thead>
<tr>
<th>KDOQI Stage</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>36</td>
<td>34.6%</td>
</tr>
<tr>
<td>Stage 2</td>
<td>60</td>
<td>57.7%</td>
</tr>
<tr>
<td>Stage 3</td>
<td>8</td>
<td>7.7%</td>
</tr>
<tr>
<td>Stage 4</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Stage 5</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>KDOQI STAGE</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Stage 1</td>
<td>20 (55.6%)</td>
<td>16 (44.4%)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>29 (48.3%)</td>
<td>31 (51.7%)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>5 (62.5%)</td>
<td>3 (37.5%)</td>
</tr>
<tr>
<td>Stage 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stage 5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
eGFR by various criteria for CKD in our paediatric age-group

• In our study

✓ (8) 7.7% (cut off <60ml/min/1.73m2)

✓ (37) 35.6% (cut off <75ml/min/1.73m2)

Prevalence of risk factors

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Percentage</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Freq (%)</td>
<td>Freq (%)</td>
</tr>
<tr>
<td>Pre-hypertension</td>
<td>12.4%</td>
<td>5 (35.7%)</td>
<td>9 (64.3%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>12.8%</td>
<td>1 (10.0%)</td>
<td>9 (90%)</td>
</tr>
<tr>
<td>Overweight</td>
<td>7.9%</td>
<td>5 (55.6%)</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td>Obesity</td>
<td>5.3%</td>
<td>1 (16.7%)</td>
<td>5 (83.3%)</td>
</tr>
</tbody>
</table>
Inverse relationship between TC and eGFR
SBP vs eGFR

R² Linear = 0.09
DBP vs eGFR

R² Linear = 0.088
Conclusions

• There is an apparent high prevalence of CKD among paediatric population of Ondo State
• There is a high prevalence of risk factors among them
• Hypertension, obesity and dyslipidaemia showed a significant relationship to eGFR.
Recommendations

• Higher nos of subjects needed;
• Follow-up of subjects with established risk factors;
• Follow-up of subjects with reduced eGFR;
• Identify causes of reduced eGFR in them;
• Screening of siblings of subjects with risk factors and/or reduced eGFR.
KIDNEY CARE CENTRE, ONDO
Laje Road Ondo, Ondo State
...Toward a better living

FEATURES:
- Friendly and highly motivated staff
- Multi-professional approach to patient care
- State-of-the-art dialysis suite
- World-class medical words for in-patient care
- Fully-automated diagnostic laboratory unit
- Mini-conference room/library

ENJOY OUR 3-PRONG APPROACH
- Primary prevention of kidney disease
- Secondary prevention / Dialysis
- Research

KCC...Toward a better living
Thank you